Biomédecine translationnelle

  • ISSN: 2172-0479
  • Indice h du journal: 16
  • Note de citation du journal: 5.91
  • Facteur d’impact du journal: 3.66
Indexé dans
  • Ouvrir la porte J
  • Genamics JournalSeek
  • JournalTOCs
  • RechercheBible
  • Le facteur d'impact global (GIF)
  • Infrastructure nationale des connaissances en Chine (CNKI)
  • CiteFactor
  • Scimago
  • Bibliothèque des revues électroniques
  • Répertoire d'indexation des revues de recherche (DRJI)
  • OCLC - WorldCat
  • Invocation de Proquête
  • Publions
  • MIAR
  • Commission des bourses universitaires
  • Fondation genevoise pour la formation et la recherche médicales
  • Google Scholar
  • SHERPA ROMÉO
  • Laboratoires secrets des moteurs de recherche
  • ResearchGate
Partager cette page

Abstrait

Synthesis and Characterization of Carrageenan Coated Magnetic Nanoparticles for Drug Delivery Applications

Shanmuga SI,Mayank Singhal and Shampa Sen

Background: Nanomaterials are extensively used from household applications to industrial applications. Nanomaterials are the substances that are synthesized in the size ranging from 1-100 nm which exhibits excellent physical and chemical properties compared to their bulk forms. Iron oxide nanoparticles (magnetic) have unique properties that make them applicable in drug delivery applications. However due to the higher oxidation state of iron, those nanoparticles possess less stability and tends to agglomerate in the body when used for such applications. This paper reports on the synthesis of magnetic nanoparticles and coating them with natural polymer, carrageenan to avoid agglomeration.

Methods and findings: Carrageenan was extracted from red algae obtained from Rameswaram. Pure carrageenan was obtained by ethanol precipitation method. The obtained polymer was used for synthesis of magnetic nanoparticles by coprecipitation technique. The synthesized polymer coated magnetic nanoparticles were characterized by various characterization techniques and was found to possess the characteristics of being nanoparticle. The obtained nanoparticle was checked for its anti-haemolytic activity as an initial screening for drug delivery applications

Conclusion: The synthesized nanoparticle can be widely used for drug delivery applications as carrageenan, natural polymer has advantages compared to synthetic polymers.